p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.427D4, M4(2).25D4, C4.121(C4×D4), C4.D4⋊4C4, C42⋊6C4⋊5C2, C4.10D4⋊4C4, (C4×M4(2))⋊23C2, M4(2).9(C2×C4), M4(2).C4⋊3C2, C4.194(C4⋊D4), M4(2)⋊4C4⋊18C2, C4.17(C42⋊2C2), C23.125(C4○D4), C42⋊C22.7C2, (C2×C42).301C22, (C22×C4).695C23, C22.7(C4.4D4), C42⋊C2.37C22, C22.11(C42⋊C2), (C2×M4(2)).322C22, C2.17(C24.C22), C22.29(C22.D4), M4(2).8C22.2C2, (C2×C4≀C2).11C2, (C2×D4).98(C2×C4), (C2×Q8).83(C2×C4), (C2×C4).1340(C2×D4), (C2×C4).17(C22×C4), (C2×C4).336(C4○D4), (C2×C4○D4).34C22, SmallGroup(128,664)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.427D4
G = < a,b,c,d | a4=b4=c4=1, d2=b, ab=ba, cac-1=dad-1=a-1b-1, bc=cb, bd=db, dcd-1=a2c-1 >
Subgroups: 212 in 108 conjugacy classes, 46 normal (36 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C8⋊C4, C4.D4, C4.10D4, C4≀C2, C8.C4, C2×C42, C42⋊C2, C2×M4(2), C2×C4○D4, C42⋊6C4, M4(2)⋊4C4, C4×M4(2), M4(2).8C22, C2×C4≀C2, C42⋊C22, M4(2).C4, C42.427D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22×C4, C2×D4, C4○D4, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C24.C22, C42.427D4
(2 8 6 4)(10 16 14 12)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)
(1 14 5 10)(2 11)(3 16 7 12)(4 13)(6 15)(8 9)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
G:=sub<Sym(16)| (2,8,6,4)(10,16,14,12), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16), (1,14,5,10)(2,11)(3,16,7,12)(4,13)(6,15)(8,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)>;
G:=Group( (2,8,6,4)(10,16,14,12), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16), (1,14,5,10)(2,11)(3,16,7,12)(4,13)(6,15)(8,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16) );
G=PermutationGroup([[(2,8,6,4),(10,16,14,12)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16)], [(1,14,5,10),(2,11),(3,16,7,12),(4,13),(6,15),(8,9)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)]])
G:=TransitiveGroup(16,321);
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | ··· | 4I | 4J | 4K | 4L | 4M | 4N | 8A | ··· | 8H | 8I | 8J | 8K | 8L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 2 | 2 | 2 | 8 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | C4○D4 | C4○D4 | C42.427D4 |
kernel | C42.427D4 | C42⋊6C4 | M4(2)⋊4C4 | C4×M4(2) | M4(2).8C22 | C2×C4≀C2 | C42⋊C22 | M4(2).C4 | C4.D4 | C4.10D4 | C42 | M4(2) | C2×C4 | C23 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 6 | 2 | 4 |
Matrix representation of C42.427D4 ►in GL4(𝔽5) generated by
0 | 3 | 0 | 0 |
1 | 3 | 0 | 0 |
0 | 0 | 0 | 3 |
0 | 0 | 1 | 3 |
3 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 3 |
0 | 0 | 3 | 4 |
0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 |
1 | 4 | 0 | 0 |
0 | 4 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 0 | 1 | 4 |
0 | 0 | 3 | 4 |
G:=sub<GL(4,GF(5))| [0,1,0,0,3,3,0,0,0,0,0,1,0,0,3,3],[3,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3],[0,0,1,1,0,0,0,4,3,0,0,0,4,2,0,0],[0,2,0,0,4,0,0,0,0,0,1,3,0,0,4,4] >;
C42.427D4 in GAP, Magma, Sage, TeX
C_4^2._{427}D_4
% in TeX
G:=Group("C4^2.427D4");
// GroupNames label
G:=SmallGroup(128,664);
// by ID
G=gap.SmallGroup(128,664);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,58,2019,248,718,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=b,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^-1,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*c^-1>;
// generators/relations